A Maximum Noise Fraction Transform Based on a Sensor Noise Model for Hyperspectral Data

نویسندگان

  • Naoto Yokoya
  • Akira Iwasaki
چکیده

The maximum noise fraction (MNF) transform, which produces the improved order of components by signal to noise ratio (SNR), has been commonly used for spectral feature extraction from hyperspectral remote sensing data before image classification. When hyperspectral data contains a spectral distortion, also known as a “smile” property, the first component of the MNF, which should have high image quality, suffers from noisy brightness gradient pattern which thus reduces classification accuracy. This is probably because the classic noise estimation of the MNF is different from the real noise model. The noise estimation is the most important procedure because the noise covariance matrix determines the characteristics of the MNF transform. An improved noise estimation method from a single image based on a noise model of a charge coupled device (CCD) sensor is introduced to enhance the feature extraction performance of the MNF. This method is applied to both airborne and spaceborne hyperspectral data, acquired from the airborne visible infrared/imaging spectrometer (AVIRIS) and the EO-1/Hyperion, respectively. The experiment for the Hyperion data demonstrates that the proposed MNF is resistant to the spectral distortion of hyperspectral data. Furthermore, the image classification experiment for the AVIRIS Indian pines data using the MNF as a preprocessing step to extract spectral features shows that the proposed method extracts higher SNR components in lower MNF components than the existing feature extraction methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Nonlinear filtering of hyperspectral images with anisotropic diffusion

A vectorial extension of the scalar anisotropic diffusion nonlinear filtering process applied on hyperspectral images is presented. In a first step, data are projected in a transformed space with a Maximum Noise Fraction transform, allowing the new components to be sorted in order of signal to noise ratio. The filtering is adapted to the signal to noise ratio of each component and a spectral di...

متن کامل

Efficient Clustering-based Noise Covariance Estimation for Maximum Noise Fraction

Most hyperspectral images (HSI) have important spectral features in specific combination of wave numbers or channels. Noise in these specific channels or bands can easily overwhelm these relevant spectral features. Maximum Noise Fraction (MNF) by Green et al. [1] has been extensively studied for noise removal in HSI data. The MNF transform maximizes the Signal to Noise Ratio (SNR) in feature sp...

متن کامل

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015